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BRST Quantization of N =2, 3, and 4 Superconformal
Theories on Higher-Genus Riemann Surfaces

Kuang Leman'
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Complex contour integral techniques, developed in a previous paper for the
N =0 and 1 superconformal theories on higher-genus Riemann surfaces, are
applied to a Becchi~Rouet—Stora—Tyutin (BRST) quantization procedure of
superconformal theories with N =2, 3, and 4 super-Krichever—Novikov (KN)
constraint algebras on a genus-g Riemann surface. The BRST charges of the
superconformal theories are constructed and the nilpotency of the BRST
charges is checked. The critical spacetime dimension and the “intercepts” are
found for the N =2 and 4 cases. Also calculated are the central charge and the
“intercept” for the N =3 case.

i. INTRODUCTION

BRST quantization is the fundamental approach to covariant quan-
tization of general gauge theories and conformal theories. For early work
on this subject, the reader can refer to Kuang (1992a) (henceforth referred
to as paper I and whose equations will be quoted by their number preceded
by I) and references therein. Recently, superconformal field theories on
higher-genus Riemann surfaces (Eguchi and Ooguri, 1987; Bonora et al.,
1988a,h; Mezincescu et al., 1989; Huang and Zhao, 1990; Dai et al., 1990;
Zucchini, 1991; Frau ef al., 1991; Xu, 1991) have attracted a lot of interest.
The superconformal invariance in superconformal theories on higher-genus
Riemann surfaces is a basic symmetry, called the super-Krichever-
Novikov (KN) symmetry (Krichever and Novikov, 1987; Konisi et al.,
1989). The superalgebras corresponding to the super-KN symmetry are
called as super-KN algebras. Super-KN algebras which are physically
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interesting are N =0, 2, 3, and 4 super-KN algebras. In paper I, we
developed a complex contour integral method for the BRST quantization
of superconformal theories on higher-genus Riemann surfaces in which a
regularization prescription is implemented implicitly by the method of
analytic continuation. The method essentially amounts to a clear way of
handling the operator ordering. We have used the method to deal with the
BRST quantization procedure of superconformal theories on higher-genus
Riemann surfaces with the N =0 and 1 super-KN constraint algebras. It
has been shown that the nilpotency of the BRST charge requires the critical
spacetime dimension D to be 26 and “intercept” a(g) to be 1 —3g — (9/8)g?
for the N =0 case, and 10 and 1 —32g — (17/16)g? for the N =1 case. The
purpose of the present paper is to apply this method to the BRST
quantization procedure of superconformal theories on higher-genus
Riemann surfaces with the N =2, 3, and 4 super-KN constraint algebras.
We will construct the BRST charges corresponding to the N =2, 3, and 4
cases and check the nilpotency of the BRST charges, which is a crucial test
of the self-consistency of the quantization procedure as well as the quan-
tum self-consistency of the super-KN algebras. The critical spacetime
dimension or the central charge and the “intercepts” for these cases will be
followed from the nilpotent condition of the BRST charges.

2. THE N =2 SUPER-KN CONSTRAINED SYSTEM

Consider a compact Riemann surface £ of genus g and two distin-
guished points in a general position on X. The N =2 super-KN algebra on
X can be constructed by using the linear transformation method (Kuang,
1992a; Konisi et al., 1989) and the operator production expansion ap-
proach (Kuang, 1992b). It contains the KN generator (L,), two super-KN
generators (GZ, i =1, 2), and the U(1) current generator (H,). The N =2
super-KN algebra is

(Lo Lyl =(m — 1)L, 4 g, + 5D — go+ 1)1 — £0)(1 — 80— 10y 4 m2g,
[L,, G l=Gn—r+3i8)Ghs gy L Hal=—(m —30)H, .,
{Gl, G} =2L,,, 4, +Dl(r —8*— 310, 4,3  (no sum on i) ()
{G},G2}=2i(r —9H, ;g  [H, H,)=5D(n —38)0, 4 me
[H,, G}1=3iG} ., 45, [H, Gl=—3iG},, 4,

where g, =32g, g is the genus number of the Riemann surface, and D is the
spacetime dimension. n, m, r, and s take integer (half-integer) values when
g is even (odd). The BRST charge corresponding to the algebra (1) can be
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written as

2
0=00+0u+0i+ Y (Qh+Q5+0i+08)+Qu+0Qs+0Qs (2)

i=1

with
O = L1, 3
Qo= — UM _g, (4a)
=%§n(n — 1) Py oy gl (52)
Z(zn—r+4g) SRR LI (62)
Q=T Glp", Q
= -—g Py 1P 0, (8a)
Qo3 =§';Hnﬁ_n ®
Q.= -2i§,(r — )P ppl,: (10a)
5= —ngn (M —38) Py s gofi—mfl—n: (11a)
=%z; Rir—geP (122)
= =3 Ry, 1eP” A (13a)

n,r

where n_, and P, are, respectlvely, the ghost and antxghost corresponding
to the constraints L,, whereas p’ , and R, and 4_, and P,, are, respec-
tively, the ghost and antighost corresponding to the constraints G: and H,,.
They satisfy the relations {#,, Pr} =0, mos fns P} =0p4mo> and
[p;, Ri]1 =095, 5. The n_, term in (4) comes out through normal
ordering of the “energy operator” L, ; following paper I, the parameter
a(g), which is undetermined so far, is called the “intercept.”
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We then express terms on the rhs of equation (2) as complex contour
integrals:

Onn = —u(g) 3gd”-g0_ ) (4b)
0= —3€dz 250 P ((2): (55)

Q5=3 3€d2 z78 3[2R "@p(2)n'(2) — 4R (Dp'(2n(2) + g R"(z)p"(z)q(z):l:

(6b)
0i= —§dzz-%g— L PP ): (3b)
Qo= —2i §dz B — B p'e): (10b)
0, = §dz 2= PO NG + gz PO (1)
Q:,=éz’fﬁdzz—%g—':RZ(z)pl(z)ﬁ(z): (12b)
03=—1i §dzz~g- LRGPC): (136)

where we have used the notations 5'(z) = dy(z)/dz, P(z) =), P,z ", and
$O on.

In order to check the nilpotency of the BRST charge, we have to
evaluate the anticommutator {Q, Q}. From (2), we see that {Q, O} can be
written as the sum of 105 anticommutators, so that we must evaluate the
105 anticommutators. By a careful analysis, it can be shown that {Q, 0}
can be expressed as

{Qs Q} = {Q> Q}?m + {Q’ Q}pp + {Qs Q}r?r? (14)

{Q, Q},, in (14) is the contribution of all anticommutators to the KN ghost
bilinear terms,

{Q’ Q}rm = {Q()Oa QOG} + (Ql’ QI} + -;1 {le le} + {st QS} + 2{Qms Ql}
(15)
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The contribution to the terms of the form p’ ,pi_,, comes from the
anticommutators

(0.0}, =3 (O 0} +25, {04 04} +2 {Q0r 04} +2(0:. On}
¥ ’ (16)

The contribution to the ghost bilinear terms #_,#, .., comes from

{Qs Q}f?ﬁ = {QO3> QG3} + 2{Qés Qg} (17)

We now evaluate the anticommutators on the rhs of equations (15)—

7.

2.1. The KN Ghost Bilinear Terms

For convenience, we first calculate {Qs, s} in (15). According to the
analysis in paper I, the anticommutator for two Q5 can be expressed as the
following complex double contour integral:

{05, 05} =3 §C é dz dw (zw) =5[22 (2(z) — gz~ P@AM()]:

X [P (Win(w) — gw = PAWIW)]: (18a)

where C,, is a contour (of z) around z =w and C, (of w) around the origin
(Fig. 1.

To evaluate (18a), we do the Wick contraction of the operator
products in the integrands. In this way we isolate the singularity of the
integrands in the limit z »w.

After using the Wick contraction theorem for the integrands in (18a),
one obtains four terms with zero contraction, eight terms with one contrac-
tion, and four terms with two contractions. Because all those terms with
zero contraction do not have any singularity at z =w, they have no

AR
T
Y

Fig. 1. ) S

The choice of contour for the complex Tz
integral in equation (18a).
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contribution to the integral (18a). Substituting the ghost propagators

P@@)n(w) = —

| zZ—Ww

= P@iw,  N@PM) = ——— =i@Fw), |z|>w]
(19)

into the terms with one concentration, after doing the z integration and
using the properties that #2 =0 = ()2, one can see that the integrals of all
one-contraction terms in (18a) vanish. The only terms that give nonzero
contributions are those with two contractions; therefore equation (18a) can
be written as

1 ~ ~
{Qs, 05} = Zi fﬁc dz dw (zw) ~¥[4 :{’(Z)ﬁ'(Z)n(Z)P(W)ﬁ;(W)ﬂ(W)1

—2gw™! :If(Z)ﬁ ’(Z)n(Z)F(W)ﬁ(lwm(W):

— 2z~ 1PN PWI (Whn(w):

— 1

2 —1. B0 A% B(wW .
+&°(2w) " P PWy(w)n(w)]

=Il+I2+I3+I4 (18b)
Substituting the mode expansions of ghost fields and (19) into (18b), we

have
zn—~gowm-—g0+1
I =— dzdw——-————n_,, —m
: ,;,. §co §Cw (z—w? 1

1
= g 2 (1= g0+ 1) — 20)( — 80— D1_Mln—2¢,
z"_g()"’lwm_go
L=} dz dW ———————_ N
? 2gz§co£w (Z—W)3 A=
= %g Z(n — &+ 1)(” —go)n—-nnn—Zgo
n—gowm—go+l
L=-1g § § dedwi 2 all—m
? 2 Z:n Co JCy (Z—W)3 A-nl

—38 Y (n—go)n — gy — DN _ 1 _ 2,

n

n

L=1g2Y § § ds d Z"~ Boy™ ~ 8o
=28 Z2OW ————S H_ N _m
e nm JCq JC, (Z —W)2 1

= —582Y (N — 8o _uMn_ 2,
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Therefore,
1
{QSs Qs} = ‘“ﬁz [3n® —9gon® — (785 — 6go — 3)n

— 80(85 — 680 — 3) M —hn - 2¢, (18¢c)

Then we evaluate the anticommutators of two Q%,
S 1 o o
{05, 05} = ﬁﬂg § dz dw (zw) "2 :[2R(2)p"(2)n"(z) — 4R (2)p " (2)n(2)
CO Cw

— 8z~ 'Ri(2p @n(2)]: [2R (w)p (w)n’(w) — AR (w)p " (w)n(w)
— gw ™ Riw)p (wyn(w)]: (202)

Using Wick’s theorem for the above integrand, one obtains nine terms
without any contraction, 18 terms with one contraction, and 9 terms with
two contractions. Again we can show that terms with less than two
contractions do not contribute. The terms with two contractions can be
written as

1

25, 02} =1¢ fﬁc i dz dw (zw) ~*[4 :Rf(Z)p ‘@n' @R (w)p iI(W)n(W):

-8 tRI"(Z)p"(Z)ﬂ’(Z)R ‘w)p i’l(W)n(W)I

-2 :RI"(Z)p (2" @R (w)p ""(W)W(W) :

-8 :R"'(Z)p "@n@@)R w)p "I(W)n’(W)!

+16 !R’;(Z)P "(@n@)R(w)p i’l(W)n(W) :

+4gw :RY(2)p"(2)n(2)R'(W)p "I(W)n(W):

—2gz7! :If"(Z)p (@m(2)R'(w)p i(.w)" "(w):

+4gz ™! ‘R(2)p @R w)p" (Win(w):

+ g%(zw) " :R(2)p (2’ ()R (w)p "I(W)n(W):

=I]+12+I3+I4+15+I6+I7+18+19 (20b)
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Using the ghost propagators
. . . . ZW
PI@R(wW) = —Ri@p'(w) =——.,  |z|>w| (2D
after a lengthy calculation, we obtain

1
I, = Z Z n(n — go)(n - 2g())’7—nnn —2g¢

1
2= Z Z n(n - gO)zn——nnn—Lgo

n

]

1
13 = g Z n(n - gO)n—nr’n—go

1
L= _ZZ (n —2g0)(n —go)zﬂ-n’?n—zgo
1 3 @2
I,= TEZ (7 — g0) + 3(n — £0)° 11— 3¢,

I,=—1I, ——li Z(”l —go)zﬂ-n'?n—z.go

= —580 2 (n — 2011 — 28I Ml _ 24,
L= EEgo Z (n— go)ﬂ—nﬂn—zgo
Therefore,

S 1
{03, 05} = % Y. [3n° —99gon? + (9783 + 3)n — (313 + 380) 11— ntln — 24,
(20¢)
The anticommutator of two Q has been evaluated in paper I. From
(1.29), we have
1
{0,,01} = 3 Z [—13n* 4 39g,n* — (33g5 — 6go — D

+ 20(785 — 680 — DI _utn_ 34, (23)

The evaluation of other anticommutators in equation (15) is trivial;
the results are

{Qo0> Qoo} =3D Y (n+go+ 1)(n—go)n —go— DNl _2g, (24)

{le Qm} = a(g) Z (n —go)ﬂ—nﬂn—zgo (25)
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Therefore, we add all the terms of the form n_,n_, in {Q, Q} to
obtain

1
{Q, @}y =15 X {(6 —2D)n’ + (18 —2D)n?
+ (9D — 6)g% + go + (6 — 3D) + 24a(Q)n
~[(6 +2D)g§ + 16go + 24a(@)]go 11— nMln - 3¢, (26)
2.2. The Super-KN Ghost Bilinear Terms

The contribution to the terms of the form p’ ,pi_,, (i =1,2) comes
from the anticommutators on the rhs of equation (16). The first two of
these anticommutators have been evaluated in paper 1. After contacting the
ghost and antighost fields, we get for the third anticommutator (to be
specific we take i = 1),

{04, 05} = 3% é;c dz dw z=5ow =3¢~ L {P@)pX(2)p (2) — P2)p* (2)p ' @)]:

x :R2(w)p ' W(w): (27a)

Again, all terms with less than two contractions can be shown to be zero.
Then we have

{04,068} = 3% 3€C dz dw z—~sow 32~ 1] :ﬁl(z)pz(z)p Y(2)R¥(w)p ‘(w)ﬁ'(w):

- ilf(Z)pz’(Z)P (2R*(w)p 1(W)ri(W) ]

—g +3 g—
= fi; § dz dw o 23
Co (z—w)

x [22(z — w) :pV(2)p'(W): + (z + w):p ' (Dp ' (W)]

1
=i2(108r2+336g0r — 14g3 +18g, +9p',p}_ 2 (27b)
From (1.15), we obtain
1
{01, 03} =§ZZ [—60r® — 80gor + (625 + 1280+ 3oL ,p} 5, (28)

One can get easily anticommutators in equation (16),

{Q(I)Za Qéz} =D Z [((r~ %’go)z - %]P l—rp:—Zg (29)
{04, 0u}=a(@ Y. p .0} 2 (30)
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Thus all the terms of the form p!,p} ,, can be written as
1
{0,0},1,1 = % Y [(36D — 72)r* + (96 — 48D)g,r + (16D + 4)g3

+48g, + (18 ~ 9D) + 72a(g)lp L, p} ¢ (31
The coefficients for terms of the type p2,p7_,, can be written exactly
in the same way except for replacing Q% by Q5.
2.3. The Terms of the Type §_,7,_,

The contributions to the ghost bilinear 4_,7, _, come from the two
anticommutators on the rhs of equation (17),

{Qs> Q%}=l§ § dzdw(zW)—%g~1
47c, Jc.,

x (R*(2)p '(2)i(2): :R' (W)p *(w)ii(w): (32a)

After considering the Wick contractions, one gets the nonzero parts of
(32a),

(01,02 =3 § den ) b R DIOR N
=320 —4oi i, (320)
It is easy to obtain
(0. 00} =3DT (1 =1t (39
Hence,
(0. Qb =@ D T (0 — 4 (34

Therefore the nilpotency of the BRST charge from equations (26),
(31), and (34) demands

D=2 g)=-g—38° (35)

3. THE N =3 SUPER-KN CONSTRAINED SYSTEM

We now consider the system with the N =3 super-KN constraint
algebra. We will determine the central charge by the nilpotency require-
ment of the BRST charge. Our result is that the nilpotency requires the
central charge term to be zero (i.e., C =0) and the “intercept” ofg) =
—31—3g —2g% This super-KN algebra consists of KN generators (L,),
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super-KN generators (GL,i=1,2,3) and (T,), and KN Kac—-Moody gen-
erators (H:)). The N =3 super-KN algebra can be written as

C
[Lru Lm] = (n _m)Ln+m—go+E

[Ln, G;'] = (%n - r)G£1+r—g09 [Lns Tr] = _’(%n +r +%g0)Tn+ —8¢
[H:, Gl=0 —3)T,s oy [HL Gl =ie7GE,,_y,

{GLS Gl} 2Lr+s §g +3 C[(r _'g)2 1] r+s2g (no sum on l)
G, Gi}=i(r —s)e™Hy .., (i#))

{Tr’ Ts}=%C5r+s,Oa (7, Hl]':O

{Tr!Gi}=iH£+s %g!’ [L Hl]—*(m_Zg)Hn-i—m g0
[H ] = lslijlr:—»m 1gs [Hn9 H;n] =%C(n -Eg)én-}-m,g

where C is the central charge of the super-KN algebra and &'* is the
Levi-Civita symbol.
The BRST charge for this system can be written as

(n — 8o + 1)(" "'go)(n — 80— 1)6n+m, 2g

(36)

3
Q=00+ Qu+ 0+ Y (Q5+0h+ Q5+ Qs +4q4+ 05+ Q%)

i=1

+Z(Q¥+Q2j)+q2+QO2+Q7 37

Where QOOa QOls le QtZ’ Q625 st Q{Bs and QIS haVC been deﬁned in
equations (3)-(12), and

9= _2(2’1 +r+2g0) n+r—go —rn—n:

n,r

=—3 §dz 2= S[T (@) (2) + 27" (@)1'(2)n(2) + 8oz~ T(@H2)(2):

(38)

q02=z Trt—r (39)
§=—iY (r—s)e¥ Pk, . plp',:

= fﬁdz 2~ 9PHRp Dp"(@) — PP (Dp'(2)] (40)

4_—12Pr+s ng—s

= —i §dz ~38-1 i) (2)i(2): (41)
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q16=2(n _%g) :Tn+r—gopi—rﬁi—n:

= zl;- §dz rz T80 1[ZT(Z)Pi(Z)ﬁ’(Z) -2 T(Z)p i(Z)ﬁ(Z)]: (42)

ij__ s ijk . pk i opni .
6_‘128 ‘Rn+r—%gp~r’1—n'
n,r

= jgi/k §dz 738 LR¥(2)p/(2)h'(2): (43)

3 ijk . Pk AJ Al
Q7—~128 'Pn+m—%g’7~mr’—n'
nm

= jg'* §dz iz -3 PR (2)7(2): (44)
We now check the nilpotency of the BRST charge.

3.1. The KN Ghost Bilinear Terms

The ghost contribution to the bilinears of the form #,1,_,,, comes
from

{Qa Q}'m = {Q009 QOO} + {le Ql} + .;] {Q129 Q'z} + _;l {QlS’ QIS}

+2{01, Qo} + {425 92} (45)

The contribution from each term is given as
C
(M 35 X [n*—9gon® + (3g5 — 1)n + go(1 — gl — 2,
1
an ‘ Y [—13n® + 39gon% — (33g3 — 6g, — )n

+ 80(785 — 620 — DI _ntln 2,

1
(I1m) T Y [33n° —99g,n*+(97g5+3)n — (3183 + 380)M—nln — 24,
1 (46)
(IV) EZ [—3n®+9gon> — (75 — 680 — 3)n

+ 20(85 — 680 — )M _n¥ln — 3¢,
(V) 2a(g) Z (n _g)n—nnn—Zgo

1
(V1) EZ[—'13 + 3gon* — (923 — D + go(85 — DI _ntls— 2,
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All the anticommutators in equation (45) have been evaluated before
except for the last one. Even this anticommutator can be written down just
by looking at the evaluation of {Q%, 0%}. This anticommutator was given
in equation (20b),

{05, 05 =L+ L+ L+ L+ L+ i+ L+ L+ (20b)

After considering Wick concentrations, comparing the integrands of
{42, g, } with those of {Q}, Q}}, we obtain

{qz, qz} =[1 “12~3I3_I4+15+316.—3I7+318+9I9

1
= EZ [—n®+3gon® — (928 — Dn + 8o(&5 — DIty —2g, (47)

Adding all the ghost contributions in equations (46), we get

i
{0, 0}, = B Y, {Cn®—9Cn*+[C(3g5 — 1) + 8g3 + 24g, + 24u(g) + 12]n
+ go[C(1 — g3) — 8g3 — 24g, — 240(g) — 12131 _ .7, _2,,  (48)

3.2, The Super-KN Ghost Bilinear Terms (Triplet)

The contribution to the p’_ ,p!_,, -type term comes from
(0.0}, =Y, {0k, Oz} +27. 04, 04} +2 7. {gh g}

+4_Z {07, 0} +2{Qs. Qo1 } (49)

All these anticommutators have been evaluated before except for the third
one. As an example, we evaluate

{qé,qé}=-~;—§c 3& dz dw 248w~ 2(3:P@p @) TWp ()i ()

—gw ™ L@ D@ T W ((w):

1
72

Y (—36r% — 432g,r + 68g3 + 12g0 — 9p,p}_ o, (50)
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Hence the contributions from different terms in equations (49) are, respec-
tively,

D 55 THC g7~ 110l s
(D 5 %60 = 80gor + (683 + 1280+ oL p} 2,
{m %;(—361‘2 —432g,r + 6823+ 128, —Np,p} o {51
av) 11—82 (1087 + 338gor — 14g2+ 12g+9)p' 013,

(V) 20(8) Lp=rprzg
They add up to
{0,0},1, = ﬁ; [36Cr® — 48Cg,r + D(16g% — g) + T2g% + 216g,
+216a(g) + 108]pL,p!_,, (52)

3.3. The Super-KN Ghost Bilinear Terms (Singlet)

The contribution to the 7_,7_,-type terms comes from only one
anticommutator,

{q027 qOZ} :Z {Tra Ts}t—rt—s
=iCYt 1, (53)

3.4. The KN Kac—Moody Ghost Bilinear Terms

The contribution to the ghost bilinear 4°_,4%_, comes from
{Q’ Q}ﬁﬁ = z {Q{)S’ Qéa} + Z {an Qléj} + {Qﬂ Q’/‘} (54)
i LJ

The corresponding contributions to the ghost bilinears are
c YY) YY)
{0, Q=3 X =310, — 2 (n —38)i s

+2Y (=3 A, (55)
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Therefore the nilpotency of the BRST charge from equations (48),
(52), (53), and (55) implies

C=0, ofg)=—-3-3g-3g? (56)

4. THE N =4 SUPER-KN CONSTRAINED SYSTEM

The N =4 super-KN algebra can be written as (the repeated Greek
indices are summed over)

[Ly, Lpl=(—m)L, gyt 3D(n —go+ D(n — go)n — go— D), 4 magq
(L, Gil=Gr~7—38)Grir—g, ((=1,2,3,4)
{GL G} =2L, ., 1, +2D[(r —8) —310,+,5  (no sum on i)
{GY. G2} =2i(r —9)e*HY,,, {G}.Gi}=2i(r —9H],,
@#p, a,f=1213)

(57)

[L., Hil= —(n —38)H% 4 gy
[H3, Gl =4ie*GY, ,_y, — 516G

n+r—gop
[H}, G l=3iGhy, .,  [Hy HLl=ie®PH,,, 1, +5D(n—38)0%5,, ¢

where D is the central extension of the super-KN algebra.
The BRST charge for this system can be written as

4 3
Q=00+0u+0i+ Y QhL+0:+0)+ Y (05+08+0%

i=1 w=1
+ 23 Q¥+ 08+ 0, (58)
o o,

Where Q009 QOI) le QIZa Q629 Ql3: Q£)3’ Q59 and Q7 arc the same as fOI' the
N =3 case, and

QFf =2 (r—s)e:P1, pP p* (59)
o= Z r —9) P2, 0% 0%, (60)
Q¥ = —%sz (O%PRY ., g+ PR 1P A%, (61)
g zZ Ry tgpt A%, (62)

Now we write down the contributions to the ghost bilinears.
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4.1. The KN Ghost Bilinear Terms

Nontrivial contributions to the terms of the type #_,#, _ 5., come from

{Qa Q}'m ={Q009 Q00}+{Q17Ql}+ Z-:l {th Qf?}'i' Z:l {Q%" Qg}+2{Q1: QO!}

® (i) (iiD) (iv) )
(63a)

All these anticommutators have been evaluated before. Nonzero con-
tributions coming from the different terms above can be written as

() 3D Y [n®—3gen® +(3g5— Dn — go(g5 — DIty — 24,
1
(ii) p Y [—13n% + 39g,n> — (33g2 — 6g, — )n
+ 20(78% — 620 — DIl — 2¢,

(iif) 5. [33n° —99gon® + (97g5 + 3)n — (3185 + 380) M —ntlu - 24,

N = O

(v) =¥ [—3n°+9gyn?—(7g3 — 68— 3)n
+ 80(g5 — 680 — I _1, - 220
(V) 2e(g) g(n — 8o —nlln— 24,
Thus the tétal contribution is

{0,0},, = Tlﬁ Y {(9D + 18)n* — (27D + 54)n> + [(27D — T4)g} + 36g,

+36a(g) + (18 — 9D)]n — [(9D + 38)g3
+ 3680 — 364(g) — (9D — 18)]go}11_n1n 24, (63b)

4.2. The Super-KN Ghost Bilinear Terms

The contribution to the terms p’ ,p;_,, comes from

4 4
{Qs Q}pp = _;} {ngs Q:)Z} + 2 -; {sza Q§}+2 'Z'k {Q:{’ §}+2{Q39 QOI}
7 (642)
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From (I.Sl), (1.52) and (27), one obtains the total contribution,
{Q,0},, = z [(72D + 144)r? — 192g,r + (32D + 104)g3 + 72g,

+ 720(g) — (18D —Nlp’_.pl_4, {64b)

4.3. The Terms of the Type 4% ,4%_,

The contributions to the coefficient of the terms of the type 4% ,745%_,
come from the anticommutators

{@: Q)4 = {Qo3s Qos} ’*’Z {06, Q%) +1{0:, 07} (65a)
)] (ii) (iii)

From the previous evaluation, one can obtain the nonzero contribu-
tions coming from the different terms above,

() DY (n =30 %l
(ll) —‘Z (n - g)}?a nﬁi -

(i) 22(""53’)’?“ aflg

Hence the total contribution is

{0. 0}y =3:(D+2) Z (=3¢ (65b)

From (63b), (64b), and (65b) we conclude that the nilpotency of the
BRST charge requires

D=2 wg)=-1-3g-3¢ (66)

5. CONCLUDING REMARKS

We have studied the BRST quantization procedure of the superconfor-
mal theories on a genus-g Riemann surface with the N=2, 3, and 4
super-KN algebras by using the complex contour integral techniques
developed in paper I. We have checked the nilpotency of the BRST charges
corresponding to these superconformal theories. For the N =2 case, the
critical spacetime dimension and the “intercept” have been found to be
D=2 and afg) = —g —3g% For the N =4 system, we have obtained
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D= -2 and o{g) = —1 —3g —3g2 These results can be related to the
physical parameters (such as the number of scalar fields) in the Lagran-
gians, and they may be useful for the study of representation theories of the

super-KN algebras (Kuang, 19925). For the N = 3 case, we have found the

central charge C =0 and o(g) = —3—2g —2g% Although the physical

application of these results is not clear for the N =3 case because of the
lack of a Lagrangian realization, it may be useful at least in statistical
mechanics or string field theories on higher-genus Riemann surfaces. It is
obvious that when g =0, our results can recover the known results (Qiu,
1987; Chang and Kumar, 1987; Kent and Riggs, 1987) on a trivial
Riemann surface.
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