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Complex contour integral techniques, developed in a previous paper for the 
N = 0 and 1 superconformal theories on higher-genus Riemann surfaces, are 
applied to a Becchi-Rouet-Stora-Tyutin (BRST) quantization procedure of 
superconformal theories with N = 2, 3, and 4 super-Krichever-Novikov (KN) 
constraint algebras on a genus-g Riemann surface. The BRST charges of the 
superconformal theories are constructed and the nilpotency of the BRST 
charges is checked. The critical spacetime dimension and the "intercepts" are 
found for the N = 2 and 4 cases. Also calculated are the central charge and the 
"intercept" for the N = 3 case. 

1. I N T R O D U C T I O N  

BRST quantization is the fundamental  approach to covariant quan- 
tization of  general gauge theories and conformal  theories. For  early work 
on this subject, the reader can refer to Kuang (1992a) (henceforth referred 
to as paper  I and whose equations will be quoted by their number  preceded 
by I) and references therein. Recently, superconformal field theories on 
higher-genus Riemann surfaces (Eguchi and Ooguri, 1987; Bonora et  al., 
1988a,b; Mezincescu et  al., 1989; Huang and Zhao,  1990; Dai et  al., 1990; 
Zucchini, 1991; Frau et  al., 1991; Xu, 1991) have attracted a lot of  interest. 
The superconformal invariance in superconformal theories on higher-genus 
Riemann surfaces is a basic symmetry, called the super-Krichever-  
Novikov (KN)  symmetry (Krichever and Novikov,  1987; Konisi et  al., 

1989). The superalgebras corresponding to the super-KN symmetry are 
called as super-KN algebras. Super-KN algebras which are physically 
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262 Kuang 

interesting are N = 0, 2, 3, and 4 super-KN algebras. In paper I, we 
developed a complex contour integral method for the BRST quantization 
of superconformal theories on higher-genus Riemann surfaces in which a 
regularization prescription is implemented implicitly by the method of  
analytic continuation. The method essentially amounts to a clear way of  
handling the operator ordering. We have used the method to deal with the 
BRST quantization procedure of  superconformal theories on higher-genus 
Riemann surfaces with the N = 0 and 1 super-KN constraint algebras. It 
has been shown that the nilpotency of  the BRST charge requires the critical 
spacetime dimension D to be 26 and "intercept" ct(g) to be 1 - 3g _ (9/8)g2 
for the N --- 0 case, and 10 and ~1 _ _  zg3 _ (17/16)g 2 for the N = 1 case. The 
purpose of  the present paper is to apply this method to the BRST 
quantization procedure of  superconformal theories on higher-genus 
Riemann surfaces with the N = 2, 3, and 4 super-KN constraint algebras. 
We will construct the BRST charges corresponding to the N = 2, 3, and 4 
cases and check the nilpotency of  the BRST charges, which is a crucial test 
of  the self-consistency of  the quantization procedure as well as the quan- 
tum self-consistency of  the super-KN algebras. The critical spacetime 
dimension or the central charge and the "intercepts" for these cases will be 
followed from the nilpotent condition of  the BRST charges. 

2. THE N = 2 SUPER-KN C O N S T R A I N E D  S Y S T E M  

Consider a compact Riemann surface Y~ of genus g and two distin- 
guished points in a general position on Z. The N = 2 super-KN algebra on 
Z can be constructed by using the linear transformation method (Kuang, 
1992a; Konisi et al., 1989) and the operator production expansion ap- 
proach (Kuang, 1992b). It contains the K N  generator (L,), two super-KN 
generators (G~, i = 1, 2), and the U(1) current generator (H,). The N = 2 
super-KN algebra is 

[Zn, Zm] = (m -- n)L ,  +,1_go + �88 D(n - go + 1)(n - go)(n - go - 1)6, + m,2go 

(�89 ' ' [ L . , H m ] = - ( m  1 n - -~g)  n + m - - g  = - r + g g ) G . + ~ _ g o ,  

{G~, Gi~} = 2Lr+~_�89 +D[( r  _g )2  1 -~]6r+s,2g (no sum on i) (1) 

{G~, G~ } = 2i(r-s)Hr+s_g , [H.,Hm]= �88 _ ~I g)On + m,g 

�9 2 1 1 �9 [H., G)] =�89 [H., G2r] = --~IGl+r_Ig 

where go = 23-g, g is the genus number of  the Riemann surface, and D is the 
spacetime dimension, n, m, r, and s take integer (half-integer) values when 
g is even (odd). The BRST charge corresponding to the algebra (1) can be 
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written as 

2 

= Q3 + Q~) + Q03 + Q4 + Q5 Q Qoo+Qm+Q,+ ~ (Q~E+Q~+ i 
i = l  

(2) 

with 

Qoo = Z L,,q_,, (3) 
/,/ 

Qol = - a(g)r/_go (4a) 

Q1 = �89 ~ (n - m) :Pn+m_g~]_m~]_n : (5a) 
n , m  

Q~ = Z (�89 - r + �88 :R~ +,_gp~_,q_." 
n , r  

(6a) 

Q~2 = ~ G~P ~-, (7) 
r 

Q ~ = - Z . p  x o' o' " (8a) " ~ r + s - 2 g - - s - - r "  
r ,$  

Qo3 = ~ H,,q_. (9) 
n 

Q4 - 2 i  ~ (r - s) "ff 2 ! (lOa) = �9 r + s - g P - s P - r :  
r,$ 

Q ,  - Z ( m  ~ " ^ ^ = -~g)  :Pn+m_go~_mt~_n : 
n , m  

( l la )  

= " .R,+,_2gP_:l_ , :  (12a) 
n , r  

062 - ~ i X "  ' ~ ^ �9 = .Rn +,-  �89 (13a) 
n , r  

where t/_. and P. are, respectively, the ghost and antighost corresponding 
to the constraints L., whereas p"_. and R~, and 0 - .  a n d / ~ ,  are, respec- 
tively, the ghost and antighost corresponding to the constraints G~ and H.. 
They satisfy the relations {q.,Pm} =3~+m,0, {tl.,/~m}=6.+m,0, and 
Loi, R~] =6q3r+s,0 . The t/_g o term in (4) comes out through normal 
ordering of the "energy operator" Lgo; following paper I, the parameter 
a(g), which is undetermined so far, is called the "intercept." 
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We then express terms on the rhs of equation (2) as complex contour 
integrals: 

Qol = - or(g) f d z  z-gO - lq(z) (4b) 

Q, = - ~clz z-go :e(z)~'(z)~(z): (Sb) 

(6b) 

- d z  z - � 8 9  1 (8b) Q~= ~ :e(z)Pi(Z)Pi(z): 

Q4 = - 2i ~ d z  z -go :/6(z)p 2(z)p l"(z ) _ ff(z)p 2'(z)p l(z): (10b) 

Q5 = f d z  z-g~ :[,P(z)O'(z)q(z) + �89 fi(z)O(z)q(z)]: ( 1 lb) 

1 , 4 l_.g Q ~ = -~ 1 dz z -2 - 1 :R ~(z)p l(z)O(z): ( 1 2b) 
.,i 

Q26 = - �89 i f d z  z - g -  1 :Rl(z)p 2(z)O(z): ( 1 3b) 

where we have used the notations q ' (z)= dtl(z)/dz, P(z) = ~ .  P . z - " ,  and 
SO on. 

In order to check the nilpotency of the BRST charge, we have to 
evaluate the anticommutator {Q, Q}. From (2), we see that {Q, Q} can be 
written as the sum of 105 anticommutators, so that we must evaluate the 
105 anticommutators. By a careful analysis, it can be shown that {Q, Q} 
can be expressed as 

{Q. Q} = {Q. Q}~, + {Q. O}pp + {Q. a } ~  (14) 

{Q, Q}~. in (14) is the contribution of all anticommutators to the KN ghost 
bilinear terms, 

2 

{Q, Q}~, = {Qoo, Qoo) + (Q,, Q, } + ~ {Q~, Q~) + {Qs, Qs) + 2{Qo,, Q~} 
i = 1  

(15) 
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The contribution to the terms of the form pi_rp~_2g comes from the 
anticomrnutators 

{Q, Q},p = ~ {Q~)z, Q~2) + 2 ~ {Q~, Q~} + 2 ~ {Q4, Q~} + 2{Q3, Qol } 
i i , j  i 

(16) 

The contribution to the ghost bilinear terms 0-~0n-g comes from 

{Q, O}0o = {Qo3, Qo3} + 2{Q6 ~, Q2} (17) 

We now evaluate the anticommutators on the rhs of equations (15)-  
(17). 

2.1. The KN Ghost Bilinear Terms 

For convenience, we first calculate {Qs, Qs} in (15). According to the 
analysis in paper I, the anticommutator for two Q5 can be expressed as the 
following complex double contour integral: 

x :[P(w)O:(w)rl(w ) - gw -lP(w)O(w)rl(w)]: (18a) 

where Cw is a contour (of z) around z = w and Co (of w) around the origin 
(Fig. 1). 

To evaluate (18a), we do the Wick contraction of the operator 
products in the integrands. In this way we isolate the singularity of the 
integrands in the limit z ~ w. 

After using the Wick contraction theorem for the integrands in (18a), 
one obtains four terms with zero contraction, eight terms with one contrac- 
tion, and four terms with two contractions. Because all those terms with 
zero contraction do not have any singularity at z = w, they have no 

Fig. 1, The choice of contour for the complex 
integral in equation (18a). 

, : t -~Cw 
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contribution to the integral (18a). Substituting the ghost propagators 

Z A W A 

e(z)'~lw) = z - w = p,(z)~,(w), ~,(z)elw) = w - z -  = O,(z)e(w), Izl > Iwl 

(19) 

into the terms with one concentration, after doing the z integration and 
using the properties that q 2 = 0 m_ (y  ' )2 ,  one can see that the integrals of  all 
one-contraction terms in (18a) vanish. The only terms that give nonzero 
contributions are those with two contractions; therefore equation (18a) can 
be written as 

{Q,,  Qs } = ~ dz dw (zw) -g[4 :P(z)O,'(z)q(z)ff(w)O'(w)q(w): 
0 w I I 

-- 2 g w - l  :P(z)~,'(z)q(z)~(w)~(w)y(w): 
I I 

^ A t  
- 2 g z - 1  : e ( z ) y ( z ) y ( z ) ~ ( w ) q  ( w ) y ( w ) :  

I I 

+ g2(zw)-, ::(z)q(z)y(z)P(w)~(w)y(w):] 
I I 

= I1 + I 2 + I 3 + I 4  (18b) 

Substituting the mode expansions of  ghost fields and (19) into (18b), we 
have 

I1 = - ~, & dw (z - w) 4 q-,,Y-m 
, , , m  0 w 

1 
= - - g ~  (n --go + 1)(n --go)(n - -go--  I)Y-,,Y,,- 2go 

12 = �89 ~ dz dw (z - w) 3 q--,,Y-m 
, , , m  0 w 

= �88 2 (n -- go + l)(n -- go)Y-.V,,- 2go 

I a = --�89 ~ dz dw (z - w) 3 Y-,,Y-' , ,  
n , m  0 w 

= - - � 8 8  Z (n - -  g o l ( n  - -  go - -  l ly_, ,q, ,_  2go 

I4 = �88 ~ ,  dz dw (z - w) 2 Y--,,Y--m 
n , m  0 w 

= _ / g 2  E (n - -  go l t /_ .y .  _ 2 g o  

n 



BRST Quantization 267 

Therefore, 

_ 1  Z [ 3n3 -- 9go n2 -- (7g 2 -- 6go -- 3)n {Qs, Qs} = 18 . 

- go(g2o - 6g o - 3)]q_nrln_ 2g o (18C) 

Then we evaluate the anticommutators of  two Q i, 

{ Q~, Q~ } = l ~co ~cw dZ dw (zw) -g~ :[ 2R~(z)p~(z)rl'(z) - 4Ri(z)p"(z)rl(Z) 

- gz-IRi(z)pi(z)tl(z)]::[2Ri(w)p g(w)rl'(w ) - 4Ri(w)pi'(w)q(w) 

- gw - 1R'(w)p ~(w)q(w)]: (20a) 

Using Wick's theorem for the above integrand, one obtains nine terms 
without any contraction, 18 terms with one contraction, and 9 terms with 
two contractions. Again we can show that terms with less than two 
contractions do not contribute. The terms with two contractions can be 
written as 

{Q~, Q~}=  1 ~Co ~cw dz dw (zw)-go[4 :R~(z)p~(z)rl'(z)R~(w)p~(w)rl(w):t ' ' J 

-- 8 :Ri(z)p,i(z)rl'(z)R iCw)p "(w)q(w): 
I- I 

- 2g :R'(z)p'(z),1 '(z)R'(w)p"(w),l(w): 
I I 

- 8 :R'(z)p '[(z),1(z)R '(w); '(w),l '(w): 
L I 

+ 16 :Rg(z)p il'(z)~l(z)R il(w)p"(w)q(w): 
I I 

+ 4gw - '  :R'(z)p i'(z),7(z)R i(w); ;(w),7(w): 
t .I 

- -  2 g z  - - 1  : R  i(z)p li(Z)11(Z)R i ( w ) p  i ( W ) l l  '(W)] 
I 

+ 4gz -1 :Ri(z)p i'(z)rl(z)Ri(w)pi'(w)q(w): 
I I 

+ g 2(zw) - '  :g '(z)p'(z),7 '(z)g'(w)p '(w),7(w): 
I I 

=I ,  + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9  (20b) 



Using the ghost  propagators  

2W 
Pli(z)Ri'(w) = -R l i ( z )P i lW)  -- z -- w ' 

after a lengthy calculation, we obtain 

Ix=  

12= 

I3= 

I4=  

15= 

/6 = 

17= 

19= 

Therefore ,  

Izl > Iwl 

• ~ n(n -- go)(n -- 2go)r/_nqn - -  2 g  0 

1 
-~ "-'~ n(n - go) 2q_,,r/,, _ 2go 

1 E n(n --  go)~l_n~n - 
8 n g o  

1 
~n (n -- 2go)(n -- go)Zq_.r/n _ Ego 

12 12 ~ [(n - g o )  + 3(n - -go)a] t l_ .qn_Zgo 

- I .  = ~go ~ (n - go)~,7_n,T._ ~g. 
n 

- a g o  Z (n - go)(n -- 2go)'7-n'7.- ~o 
n 

l g~ E (n -- go ) r l_ .q .  _ Zgo 
n 

Kuang 

(21) 

(22) 

1 ~ [3n3 _ 99gon 2 + (97go2 + 3)n -- (3 lg3o + 3go)] t /_ .q._ 2go 
{a~ '  Q~} = 36 n 

(20c) 

The an t icommuta to r  o f  two Q has been evaluated in paper  I. F r o m  
(I.29), we have 

{ Q I , Q , } = I E  6 ,, [ - 13n3 + 39g~ - (33g~ - 6go - 1)n 

+ go(7go 2 -- 6go -- 1)]q_nrl,, _ 2go (23) 

The evaluat ion o f  other  an t icommuta tors  in equat ion (15) is trivial; 
the results are 

{aoo, Qoo } =1  zD  ~ (n + g o +  1)(n - g o ) ( n  - - g o  1)q--nqn--2g0 (24) 
n 

{ Q , ,  Qo, } = o~(g) ~_, (n - g o ) y - . q .  - ego (25) 
n 
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Therefore, we add all the terms of  the form q-n~-n in {Q, Q} to 
obtain 

12 { a '  O } " ~  = 1 2 .  { ( 6  - 2 D ) n  ~ + ( 1 8  - 2 D l n  2 

+ [(9D - 6)g~ +go  + (6 -- 3D) + 24e(g)ln 

- [(6 + 2D)g~o + 16go + 24~(g)lgo}~_n'7._ 2~0 (26) 

2.2. The Super-KN Ghost Bilinear Terms 

The contribution to the terms of  the form p ip  ~_ 2g (i = 1, 2) comes 
from the anticommutators on the rhs of  equation (16). The first two of 
these anticommutators have been evaluated in paper I. After contacting the 
ghost and antighost fields, we get for the third anticommutator (to be 
specific we take i = 1), 

{Q4, Q6 ~} = ~  ~ dz dw z-gow-�89 g-1 :[ff(z)p2(z)pl'(z) - ~(z)p2"(z)p~(z)] �9 
d c  0 JCw 

x :R2(w)p l(w)0(w): (27a) 

Again, all terms with less than two contractions can be shown to be zero. 
Then we have 

{Q4' Q~} =~c ~c dz dw z-~~189 l[ :'(z)P~(z)P"(z)R~(w)pl(w)O(w): 
0 w l 1 

- :P(z)p~'(z)p l(z)g21w)p ~(w)O(w):] 
1 J 

=2 o wdZdw (z-w) 3 

• [2z(z -- w) :pl'(z)pl(w): + (z + w):p~(z)pa(w):] 

1 
= - -  ~r - r P r  

72 (108r2 + 336gor - 14go 2 + 18go + 9)p ~ 1- 2g (27b) 

From (I.15), we obtain 

I ~ )Ip-~p~-Eg (28) {Qz~,Q~}=24 [_60r3_80gor +(6g~+ lZgo+ 3 1 1 
r 

One can get easily anticommutators in equation (16), 

{Q~2, Q~2} = D 2 [(r - ~go)2 - �88 '-rprl - 2g (29) 
r 

{Q~, Qoll} =~(g) 2 l 1 
P --  r P r - -  23 (30) 

r 
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Thus all the terms of  the form PL,.P)-2g can be written as 

{Q, Q}p ~p' = I y, [(36D - 72)r 2 + (96 - 48D)gor + (16D + 4)go 2 
36 �9 

1 1 + 48g o + (18 - 9D) + 72~(g)]p -rPr-2g (31) 

The coefficients for terms of the type 2 2 P-rPr--2g can be written exactly 
in the same way except for replacing Q] by Q~. 

2.3. The Terms of the Type q - . ~ n - g  

The contributions to the ghost bilinear ~-nq~-g 
anticommutators on the rhs of equation (17), 

{Q~, Q2} = 4 o d z  d w  (7.]41) --~g--I 
w 

x :R2(z)p l(z)O(z) : :R X(w)p 2(w)O(w): 

come from the two 

(32a) 

After considering the Wick contractions, one gets the nonzero parts of 
(32a), 

{a~, a~} = -~ dz dw (zw) -�89 l:R2(z)p l~)O(z)Rllw)p2(w)O(w): 
0 w I I 

= _12 Z. (n - ~g)t/_.t/.l ^ ^ _g (32b) 

It is easy to obtain 

Hence, 

{Qo3, Q o 3 } = I D )  ",(n 1 ^ ^ (33) - - ~ g ) r l _ . q  . _ g 

n 

{Q, Q},te = �88 - 2) ~ (n _1 A ^ g)q _.  q. _ g (34) 
n 

Therefore the nilpotency of the BRST charge from equations (26), 
(31), and (34) demands 

9 2 (35) D = 2, ~(g) = - g - ~ g  

3. THE N = 3 SUPER-KN CONSTRAINED SYSTEM 

We now consider the system with the N = 3 super-KN constraint 
algebra. We will determine the central charge by the nilpotency require- 
ment of the BRST charge. Our result is that the nilpotency requires the 
central charge term to be zero (i.e., C = 0) and the "intercept" ~(g) = 
_~_~g i  3 __-~g2. This super-KN algebra consists of KN generators (L,), 
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super-KN generators (G~, i = 1, 2, 3) and (Tr), and KN Kac-Moody gen- 
erators (H/) .  The N = 3 super-KN algebra can be written as 

C 
[ Z n ,  Z m ]  : ( n  - -  m ) L .  + m - s o  + - i 2  ( n  - -  g o  + 1) (n  - -  g o ) ( n  - -  g o  - 1 ) 3 .  + m, 2g 

[L., G~]=(�89 r i - ) G . + . _ s o ,  [L . ,  TA = - ( � 8 9  + r + � 89  - so  

[Hi.,G~]=(n l T - ~g) .+ . - so ,  [Hi, Cdr] = i.ijk~k . *o V n + r _ ~ g  

{ G i ,  G ; } = 2 L . + . � 8 9 1 8 9 1 8 8 2 4 7  s ( n o  s u m  o n  i)  

{ G~, G~ } = i(r -r (i ~ j) (36) 
~1~ r + s - - g o  

{T.T~} -~ - -  -~ C O  r + s,O, I T  r, H i ]  : 0 

{ T r ,  G i s } _ _  �9 i - -  ~ g ) H .  + ~ _ go - -  1 H  r - ~  __ �89 [ L n ,  H / ]  : - -  ( m  I i 

[Hi, n ~ ]  :,ijk~.[k l i . . . . .  n + m - - ~ g ,  [Hn, Him] =�89 --�89 
where C is the central charge of the super-KN algebra and e;gk is the 
Levi-Civita symbol. 

The BRST charge for this system can be written as 
3 

Q = a o o + Q o l + a l +  ~ i i i (Q2 -I- Q02 q- Q 3 q- Qio3 q - q'4 + Qi5 + Qi6) 
i = 1  

+ ~. (Q~4:+ a~/) + q2 + qo2 + Q7 (37) 
i,j 

where Qoo, Qol, Q1, Q~, Q~2, Q~, Q~3, and Q~ have been defined in 
equations (3)-(12), and 

q2 = - E  (in + r + } g o ) : L + r - s o t - r t l - n  : 
n,r 

= - ~ & :z -so [:~(z)t(z)n'(z)  + 2 ~ ( z ) t ' ( z )~ ( z )  + goz  - ~ ~(z ) t ( z )~(z ) ] :  

qo2 = ~ T r t - r  
r 

Q~J= - i  Z (r - s)eijk:p~+~_gopJ_~pi_~: 
r,s 

~-- - -  ie ijk ~ d z  :z -so[l~k(z)pY(z)pi'(z) - ffk(z)pY'(z)pi(z)] 

qt4= - i  V Pi I ~i . /.~ r-}- s - -  2 g P  - - s t - - r  
r,$ 

= - -  i ~dz  :-�89 IPi(z)p i(z)t(z): 

(38) 

(39) 

( 4 0 )  

(41) 
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i ^ i  , q~ = Z (n - ~g) :~n + , -  ~ : - r ' l  - .  

n,r 

= ~ d z  :z-go-l[zT(z)pi(z)O'(z)--goT(z)pl(z)O(z)]: (42) 

Q~J i E ~: ~. ~ . . = .Rn+r_�89 r~_n " 
n,r 

�9 . ~ lg  = ie 'sk & :z-2 -1Rk(z)pJ(z)~i(Z): (43) 

Q7 = i ~ i jk . ~ k  l ~ J  ^ i  . 

n,m 

= is igk ~.dz :z -�89 lffg(z)~J(z)~i(z): (44) 

We now check the nilpotency of the BRST charge. 

3.1. The KN Ghost Bilinear Terms 

The ghost contribution to the bilinears of the form ~l.rl.-Zgo comes 
from 

3 3 

{Q, Q},,  = {Qoo, Qoo} + {Q1, Q1} + 2 {Qi, Q~} + E {Q~, Q~} 
i = 1  i = 1  

+ 2{Q1, ao} + {q2, q2} (45) 

The contribution from each term is given as 

c E (I) 12 . [n3 - 9g~ + (3g~ -- 1)n + go(1 -g~ ) ]q_ . t l . _  2go 

(II) _1 2 [ - 13n3 + 39go n2 - (33go 2 - 6go - 1)n 
6 .  

+ go(7gg -- 6go - 1)]q_.~/. _ 2go 

(III) 1~ ~. [33n3 - 99g~ + 3)n - ( 3 1 g o  3 + 3go)]~/_.q . _  2go 

(46) 1 
(IV) L ~  [ _ 3 n  3 + 9gon2 _ (7g2 _ 6go -- 3)n 

6 .  

+ go(g 2 -- 6go -- 3)]~/_. r/. _ 2go 

(V) 2~t(g) ~ (n -- g )q-nq . -  2go 
n 

(VI) 1 E [ - n 3  + 3gon2-(9g  2 -  1)n +go(g 2 -  1)]q-.~/.-2go 
1/ . ,  , 
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All the anticommutators in equation (45) have been evaluated before 
except for the last one. Even this anticommutator can be written down just 
by looking at the evaluation of {Q~, Q~}. This anticommutator was given 
in equation (20b), 

{Q~2, Q~2}=I~+I2+I3+I4+Is+I6+IT+Is+I9 (20b) 

After considering Wick concentrations, comparing the integrands of 
{q2, q2} with those of  {a~, Q~}, we obtain 

{q2, q2} = I~ - 12 - 313 - L + 15 + 316 - 317 + 318 + 919 

- L  2 - 12 ~ [ - n 3  + 3g~ (gg~ - 1)n +go(g~- 1)]r/-.q.-2go (47) 

Adding all the ghost contributions in equations (46), we get 

1 ~  {Cn3 _ 9Cn2 + [C(3g02 _ 1) + 8g0 z + 24g o + 24c~(g) + 12ln 
{Q' Q}"" = 12 

+ go[C(1 - g o  2) - 8g2o - 24g o - 24~(g) - 12]}n_.n._ 2go (48) 

3.2. The Super-KN Ghost Bilinear Terms (Triplet) 
i i t The contribution to the P-,Pr-2g" ype term comes from 

{Q, Q}:: = ~ {Q~2, Q~02} + 2 ~ {Qi, Q~3} + 2 ~ {q~4, q~6} 
i i i 

+ 4 2 {Q~, Q~} + 2{Q~3, Qol } (49) 
i , j  

All these anticommutators have been evaluated before except for the third 
one. As an example, we evaluate 

{q]' q~} = - 3  dz dw z - 1w-go[3 :P(z)p l(z)t(z)T(w)p l(w)O'(w): 
0 w [ 

- g w - ,  :p?)p 

___1 2 12go - )p --rP,-- 2g --72 , (--36r2--432g~ +68g~+ 9 1 1 (50) 
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Hence the contributions from different terms in equations (49) are, respec- 
tively, 

C X [4(r - g)2 _ 1]p L~p~_ 2g 
(I) 12~ 

(II) [-60r2-80gor + (6go2 + 12gO+3)]p-rPr-2g 

(III) l~(--36r2--432gor +68go2+ 12go--9)pl_rp~r_2g (51) 

(IV) ~ (108r2 + 338go r -- 14g~+ 12go + 9)p--rPr-- 2g 

(V) 2~(g) 2pl_,.p~_2g 
r 

They add up to 

1 ~ [36Cr2 _ 48Cgor + D(16go 2 - g) + 72go 2 + 216g0 {a, a}p lpl = 

-t-216c~(g) -I- 108]p~rp~_2g (52) 

3.3. The Super-KN Ghost Bilinear Terms (Singlet) 

The contribution to the t_A_: type  terms comes from only one 
anticommutator, 

{qo2, q02} = ~  {T. Ts}t_rt_s 
r 

= �89 C Z t_~t_, (53) 
r 

3.4. The KN Kac-Moody Ghost Bilinear Terms 

The contribution to the ghost bilinear hi ^i 11_nl~n_g comes  f rom 

{a, a}~o E {a~3, a~3} q" 2 {Q~, </ = Q6 } at- {Q7, Q7} (54) 
i i , j  

The corresponding contributions to the ghost bilinears are 

C 
-- 2g)I/_ntln - -  2 ~ (n 2 e , ' ,  - , , ' , , -~ {Q, QI,~o=_zE(n ! ,,, ,,i _!,,'~ai ~' 

n 

+ 2 ~ ( n  ! -; ^, (55) - 2g)~/-.~/~-~ 
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Therefore the nilpotency of the BRST charge from equations (48), 
(52), (53), and (55) implies 

1 C = 0, ~(g) = --5---~g _zg3 2 (56) 

4. T H E  N = 4 S U P E R - K N  C O N S T R A I N E D  S Y S T E M  

The N = 4 super-KN algebra can be written as (the repeated Greek 
indices are summed over) 

[L., Lm] = (n - m)L .  + m -  go + �89 D(n - go + 1)(n - go)(n - go - l)b,, +,~,2go 

1 (i = 1, 2, 3, 4) [ t n ,  G i r ] =  ( } n  - ~ - ~ g ) G . +  r - g o  

1 6 {G~, G~s} = 2 L , + , _ } g  + 2D[(r - g )  - ~ ]  ,+,.2g (no sum on i) 

{G~, G~ } = 2i(r - s)e~a"H~+ s, {G~, G~ } = 2i(r - s)H~+~ 
(57) 

(c~ :# fl, ~,fl = 1,2, 3) 

[L,,, H~] = - ( n  1 _.H ~, - - ~ g )  n + m - - g o ~  

[H~, G~] I :~fl~)[7~' 1:~+flr = ~  V n + r _ l g  - - ~ l O  L T n + r _ g  0 

ct 4 1 " ct [H,,,  a , ]  ~-~, [ H L  I-I~] " ~'~ ~ ~ 1- = 2 t G n + r - 2  = te H , + m _ z g + 2 D ( n  --}g)6~36n+m,g 
where D is the central extension of the super-KN algebra. 

The BRST charge for this system can be written as 
4 3 

Q = Qoo + Qol + Ql + ~ lr~i + t~i ~ o z  ~ 2 + a ~ ) +  ~ ( a ~ 3 + a ~ ' + a ~ )  
i = 1  ~ = 1  

+ ~ Q,~ + ~ a~" + Q7 (58) 
~#/~ ~,i 

where Qoo, Qo~, Q~, Q~, Q~2, Q~, Qh3, Qs, and Q7 are the same as for the 
N = 3 case, and 

Q~P = - 2 i  ~ (r - s)s ~'~ :/~+ ~p~_~p~: (59) 
r,s 

Q]~ - i Z ( r  s)'/3~ ^, ^4 . (60) = - -  " r + s P - - s P - - r "  
r,s 

Q~ - - �89  .t.~,~,4 e -~ ,~  ~ ~..e .~. (61) �9 \ v  a ~ n + r _ g o " ~ -  ~ n + r - - ~ g J V ' - - r ' l - - n :  
r,n 

Q~4 = �89 ~ :R~, + , -  �89 : (62) 
r,n 

Now we write down the contributions to the ghost bilinears. 
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4.1. The KN Ghost BiUnear Terms 

Nontrivial contributions to the terms of  the type r/_~r/._ 2go come from 

4 3 

{o ,a} ,m ={Ooo, Qoo}+{a~ ,Ql )+  ~ {a~ ,a t z )+  ~ {Q~ 
i = 1  ~ = 1  

(i) (ii) (iii) (iv) (v) 

(63a) 

All these anticommutators have been evaluated before, Nonzero con- 
tributions coming from the different terms above can be written as 

(i) �89 E [ n3 -- 3go n2 -b (3go 2 -- 1)n --go(g2o -- 1)]q_,,rt,,-/go 

(ii) 1 ~ [ _  13n3 + 39gon z _ (33gZo _ 6go - 1)n 
6 .  

+ go(7g~ -- 6go -- 1)]~/-.q.- 2go 

(iii) 1 ~ [33n 3 _ 99gon 2 + (97g~ + 3)n - (31g~ + 3go)]r/-.q.-2go 
9 .  

(iv) 1 ~ [ _ 3 n  3 + 9gon 2 _ (7g~ -- 6go -- 3)n 
6 .  

+ go(g~ - 6go -- 3)]r/_.q._ :go 

(v) 2 (g) (n - g o ) n - . q . -  2go 
n 

Thus the total contribution is 

1 E {(9D + 18)n 3 - (27D + 54)n z + [(27D - 74)go 2 + 36go 
{Q' Q}"" = 18 . 

+ 36~(g) + (18 - 9O)]n - [(9D + 38)go 2 

+ 36go - 36~(g) - (9D - 18)]go}r/_.t/._ 2go (63b) 

4.2. The Super-KN Ghost Bilinear Terms 

The contribution to the terms pt._rp~_2g comes from 

4 4 

{a,  Q}.p = ~., {0/2,  0h2) + 2  ~] {01, a ~ } + 2  ~ {Q~J, Q~}+2{Q~, Qo~} 
i ~ 1 i = I i , j , k  

(64a) 
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From (I.51), (I.52) and (27), one obtains the total contribution, 

{Q, Q}pp = 1__ ~ [(72D + 144)r 2 - 192gor + (32D + 104)go 2 + 72g o 
3 6 r  

+ 7 2 ~ ( g ) - ( 1 8 D  9 ~ i -- )]P-,P,-2g (64b) 

ACt A ~  4.3. The Terms of the Type r/_.r/._~ 

The contributions to the coefficient of the terms of the type 0~_.0~_g 
come from the anticommutators 

{Q, Q},~,~ = {Q03, Q03} +~]  {Q~, Q~} + {Q7, QT} (65a) 
i , j  

(i) (ii) (iii) 

From the previous evaluation, one can obtain the nonzero contribu- 
tions coming from the different terms above, 

(i) 1 
2 , 5 ] ' 1  - - n U n  - - g  

n 

(ii) - ~ ( n  1 ~ -~ 
n 

(iii) 2 ~ (n - �89 ~_g 
n 

Hence the total contribution is 

{a, a}0~ = �89 + 2) ~ (n - ~gj.l ~a~_....~_ g (65b) 
/1 

From (63b), (64b), and (65b) we conclude that the nilpotency of the 
BRST charge requires 

D = 2, ct(g) = - 1 - ~g - ~g2 (66) 

5. CONCLUDING REMARKS 

We have studied the BRST quantization procedure of the superconfor- 
real theories on a genus-g Riemann surface with the N = 2, 3, and 4 
super-KN algebras by using the complex contour integral techniques 
developed in paper I. We have checked the nilpotency of the BRST charges 
corresponding to these superconformal theories. For the N = 2 case, the 
critical spacetime dimension and the "intercept" have been found to be 

9 2 D = 2  and ~ ( g ) = - g - ~ g .  For the N = 4  system, we have obtained 



278 Kuang 

D--- - -2  and c t ( g ) = - 1  -5g3 __-5g2. These results can be related to the 
physical parameters (such as the number of scalar fields) in the Lagran- 
gians, and they may be useful for the study of representation theories of the 
super-KN algebras (Kuang, 1992b). For the N = 3 case, we have found the 
central charge C = 0 and ct(g)= _ � 8 9  _3g2. Although the physical 
application of these results is not clear for the N = 3 case because of the 
lack of a Lagrangian realization, it may be useful at least in statistical 
mechanics or string field theories on higher-genus Riemann surfaces. It is 
obvious that when g = 0, our results can recover the known results (Qiu, 
1987; Chang and Kumar, 1987; Kent and Riggs, 1987) on a trivial 
Riemann surface. 
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